
Modular Representation Theory Exam — TCC 2024/25
Return your solutions to me at J.P.Saunders@bristol.ac.uk by 10th January 2025.

For all questions below, assume that G is a finite group and k is an algebraically closed field of
characteristic p. Further, any algebras A are finite-dimensional over k and any A-modules are
finitely generated.

1. Let A be an algebra and let M be an A-module. Show that the radical length and socle
length of M coincide.

Solution:
Suppose that the socle length of M is s and the radical length of M is r. Then socsM = M
and M/ socs−1 M is a semisimple module. Thus radM ≤ socs−1 M . Since soc(radM) =
socM ∩ radM we thus have that the socle length of radM is s− 1. Iterating this, we see
that the socle length of radiM is s− i, and in particular radrM = 0 has socle length s− r
so that s = r. ■

2. Let A be an algebra and let φ : M → N be an injective homomorphism of A-modules. Show
that φ(M) is a direct summand of N if and only if there exists ψ : N → M such that ψφ is
the identity on M , i.e. ψ(φ(m)) = m for all m ∈ M .

Solution:
First suppose that φ(M) | N , so that N ∼= M ⊕M ′ for some submodule M ′ ≤ N . Then the
natural projection map π : N → φ(M) is the required map. It remains to show the converse.
Suppose we have ψ : N → M such that ψφ = IdM . We must first show that N = kerψ+φ(M).
Note that for any x ∈ N we have that x − φ(ψ(x)) ∈ kerψ and so in particular x =
(x− φ(ψ(x))) + φ(ψ(x)) ∈ kerψ + φ(M) and thus N = kerψ + φ(M) as required.
The result will now follow if we show that kerψ ∩ φ(M) = 0. But this is clear, since if
ψ(φ(m)) = IdM (m) = 0 then m = 0. ■

3. Suppose that V is an irreducible kG-module and W is a 1-dimensional kG-module. Show
that V ⊗W is irreducible.

Solution:
Suppose that V is an arbitrary kG-module and U ≤ V a submodule of V . Then U ⊗W ≤
V ⊗W is a submodule: clearly it is a vector subspace, and for any g ∈ G, u ∈ U and w ∈ W
we have g(u ⊗ w) = gu ⊗ gw ∈ gU ⊗ gW = U ⊗ W . This, however, is not sufficient. We
must also check that all submodules of V ⊗ W occur in this manner. The dual W ∗ of W
is then also 1-dimensional and irreducible, and we have that W ⊗ W ∗ ∼= EndW ∼= k by
Schur’s lemma. Thus we have that (V ⊗W ) ⊗W ∗ ∼= V ⊗ (W ⊗W ∗) ∼= V ⊗ k ∼= V and every
submodule of V ⊗W thus yields a submodule of V , but V is irreducible so it has no proper
nontrivial submodules, thus the same is true for V ⊗W and we are done.
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Since the fact that W ⊗W ∗ ∼= EndW was not mentioned in the course, here is an alternate
solution which does not use this: Suppose X ≤ V ⊗ W is a nontrivial submodule. Then
X is spanned by some vectors x1, . . . , xn ∈ V ⊗ W , but for any nonzero w ∈ W , each xi
is of the form vi ⊗ w for some vi ∈ V . Let Y denote the k-span of the vectors v1, . . . , vn
in V . Clearly Y is a nontrivial vector subspace of V . Now, as vector spaces we have that
X = Y ⊗W by construction. Since X is a kG-submodule of V ⊗W we have that gX = X,
so for any x = v ⊗ w ∈ X we have that gx = g(v ⊗ w) = gv ⊗ gw ∈ X. But since dimW = 1
we have that gw = λw for some λ ∈ k and so gv ⊗ gw = gv ⊗ λw = λ(gv ⊗ w) ∈ Y ⊗W and
so gY = Y , thus Y is a nontrivial kG-submodule of V and so Y = V and X = W ⊗ V is
irreducible. ■

4. Let V be an irreducible kG-module.
(a) Show that the multiplicity of V as a composition factor of the kG-module U is

dim HomG(P(V ), U).

Solution:
We prove this by induction on the Loewy length (recall that this is the name given to the
common radical and socle length of U) of U . If U is semisimple and φ : P(V ) → U then
rad(P(V )) ≤ kerφ and so φ induces a map from P(V )/(rad(P(V )) ∼= head(P(V )) ∼= V
to U and in particular we have that dim HomG(P(V ), U) = dim HomG(V,U) is the
multiplicity of V as a composition factor of U , as required. Now suppose that the
desired result holds for any module U of Loewy length n and suppose that U has
Loewy length n+ 1. Then the multiplicity of V as a composition factor of U is equal
to the sum of its multiplicity as a composition factor of radU and its multiplicity
as a composition factor of headU . As radU has Loewy length n, we have that the
multiplicity of V as a composition factor of radU is dim HomG(P(V ), radU), and since
headU is semisimple we also have that the multiplicity of V as a composition factor of
headU is dim HomG(P(V ),headU). So the multiplicity of V as a composition factor
of U is dim HomG(P(V ), radU) + dim HomG(P(V ),headU). Now, it remains to show
that dim HomG(P(V ), U) = dim HomG(P(V ), radU) + dim HomG(P(V ),headU). This
follows immediately from the exactness of the functor HomG(P,−) for P any projective
module, which we prove below. (Note one needs no knowledge of functors to make this
observation)
Let P be a kG-module and 0 → A

α−→ B
β−→ C → 0 be a short exact sequence. For a

kG-homomorphism φ : M → N let HomG(P,φ) : HomG(P,M) → HomG(P,N) be given
by HomG(P,φ) : ψ 7→ φψ : P → N . Then the sequence

0 → HomG(P,A) HomG(P,α)−−−−−−−→ HomG(P,B) HomG(P,β)−−−−−−−→ HomG(P,C)

is exact, and if P is projective then the induced map HomG(P, β) is surjective so that
the sequence

0 → HomG(P,A) HomG(P,α)−−−−−−−→ HomG(P,B) HomG(P,β)−−−−−−−→ HomG(P,C) → 0

is exact. To show the first claim, it is sufficient to show that HomG(P, α) is injective
and HomG(P, α) ◦ HomG(P, β) is zero, yet these are both clear since α is injective and
α ◦ β = βα = 0. For the latter claim, we require that HomG(P, β) is also surjective.
Since β is surjective, for any φ ∈ HomG(P,C) we have
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and so since P is projective there exists some map ψ : P → B such that φ = βψ =
HomG(P, β)(ψ) as required. ■

(b) Suppose also that W ∈ IrrkG. Deduce that the multiplicity of V as a composition factor
of P(W ) is the same as the multiplicity of W as a composition factor of P(V ).

Solution:
By the previous part, the multiplicity of V as a composition factor of P(W ) is equal
to dim Hom(P(V ),P(W )). Dualising the previous argument, since P(V ) is also the
indecomposable injective module with socle V , we have that the multiplicity of V as a
composition factor of P(W ) is also dim Hom(P(W ),P(V )). But again by the previous
part this is the multiplicity of W as a composition factor of P(V ), as required. ■

5. Suppose that V is a relatively H-projective kG-module. Show that V ⊗ U is relatively
H-projective for any kG-module U .

Solution:
Since V is relatively H-projective, V is a summand of a relatively H-free module, i.e.
V | IndGHW for some H-module W . Then

V ⊗ U | IndGH(W ) ⊗ U ∼= IndGH(W ⊗ UH)

by Lemma 4.7. But then IndGH(W ⊗ UH) is relatively H-free and so V ⊗ U is relatively
H-projective. ■

6. Let P ∈ SylpG be cyclic and normal in G and let W := rad P(k)/ rad2 P(k), where k
denotes the trivial kG-module. Show that U , V ∈ IrrkG lie in the same block if and only if
V ∼= U ⊗W⊗n for some n.
Note: When initially released, this question was missing the (rather important) word cyclic
and thus was impossible to prove due to not being true.

Solution:
As we saw in Lemma 4.29, the PIMs for G are uniserial of shape [X | X ⊗W | X ⊗W⊗2 |
. . . | X ⊗W⊗x] for some integer x, irreducible kG-module X and 1-dimensional kG-module
W . Since head P(X) ∼= soc P(X) ∼= X we have that X ∼= X ⊗W⊗x and thus W⊗x ∼= k. So
U , V ∈ IrrkG are composition factors of the same projective indecomposable kG-module if
and only if V ∼= U ⊗W⊗n for some integer n. By Proposition 5.3 ii), the irreducible modules
which lie in the same block as V are precisely {V ⊗ W⊗n | n ∈ N} and the result follows
since W⊗x ∼= k. ■
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7. (a) Prove that the blocks of SL2(p) for p > 2 are as stated in Example 5.5.
(b) Show that the Brauer trees for these blocks are as stated in Example 6.8 for p > 2.

Solution:
Let G := SL2(p). Throughout this question one should recall the definition of the irreducible
kG-modules from Example 3.13, the fact that Vp is projective (shown in Example 3.38) and
the non-split extensions between irreducible kG-modules constructed in Lemmas 4.32 and
4.33 within Example 4.31.
(a) We first note that Vp is projective and, since any extension of a nonzero kG-module by a

projective kG-module must split, we have that Vp is the only irreducible module lying in
its block (and this is the same for any projective irreducible kG-module for an arbitrary
finite group G.
We begin with V1 and determine the constituents of the block in which it lies. Taking
i = 1 in Lemma 4.32, there is a non-split extension between V1 and Vp−2 and thus by
Proposition 5.3 they lie in the same block. Next, taking i = 3 in Lemma 4.33 we note a
non-split extension between Vp−2 and V3 and so V3 also lies in the same block as V1 and
Vp−2. Note that upon iterating this process the parity of i never changes and so we pick
up every irreducible module whose index is odd.
Next, taking i = 2 in Lemma 4.32 we observe that V2 lies in the same block as Vp−3
and taking i = 4 in Lemma 4.33 this block also contains V4. Once again iterating this
process we collect all irreducible modules indexed by even i. It remains only to show
that these two collections of modules do not form a single block. But this is clear from
the description of the projective indecomposable modules given at the end of Example
3.38, as all projective indecomposable modules only contain irreducible modules with
indices of the same parity.

(b) Let 1 < i < p − 1. Then by Example 3.38, H(P(Vi)) ∼= Vp−1−n ⊕ Vp+1−n and thus,
provided p ̸= (p± 1)/2, the edge labelled by Vi shares a vertex with the edges labelled by
Vp−1−n and Vp+1−n. Now suppose that ε = ±1, p ≡ ε mod 4 and i = (p± ε)/2. Then
p± ε− (p± ε)/2 = (p± ε)/2 and so the edge labelled by Vi shares a vertex only with
the edge labelled by V(p+3ε)/2 and its heart contains a module isomorphic to its socle as
a composition factor with multiplicity one, confirming that it is the exceptional vertex
with exceptionality two.
Finally, referring once again to Example 3.38 we see that V1 shares a vertex with the edge
labelled by Vp−2 and Vp−1 shares a vertex with the edge labelled by V2. As such, the
Brauer tree is a line as drawn with the indicated exceptional vertices and exceptionalities.

■

8. Prove Corollary 5.20: Let G be a finite group and B a block of kG. Then B is a simple
algebra if and only if B has defect zero.

Solution:
Suppose that B has defect zero, so that the defect group of B is 1. Then by Theorem 5.9 every
indecomposable B-module has trivial vertex and is thus projective. Thus B is semisimple,
but B is indecomposable and thus is simple. Conversely, if B is simple then every B-module
is projective (since B is semisimple as a B-module) and so Corollary 5.19 yields that the
defect group of B is trivial. ■
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9. Let B be a block with the below Brauer tree. Determine the structure of the projective
indecomposable modules corresponding to the irreducible modules U , V and W in the cases
(m,n) = (3, 1) and (m,n) = (1, 3).

n
V

m

U

W

Solution:
This is a simple exercise in applying the algorithm described in Definition 6.3. The first thing
one must do is apply labels to some of the edges not labelled in the question, which we shall
do for each case. First up, we assume that (m,n) = (3, 1).

X6
X5

V

X4X3

X1

3

U

W

X2

First, we let Y ∼ [X1 | X2 | X3 | X4 | V | X5 | X6] denote the unique uniserial module
with the indicated radical factors (starting from headY ∼= X1) and let Z ∼ [X5 | X6 | U |
X1 | X2 | X3 | X4] similarly denote the unique uniserial module with the indicated radical
factors. Then in this case, the projective indecomposable modules may be described as follows
with the heart of the module being depicted as a direct sum of two (possibly zero) uniserial
modules.
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P(U) ∼

U
W
U
W
U
W

⊕
Y

U

P(V ) ∼
V

Z
⊕

0
V

P(W ) ∼

W

0
⊕ U

W
U
W
U

W

This leaves the case (m,n) = (1, 3), illustrated below.

3
X6

X5

V

X4X3

X1

U

W

X2

In this case, with Y and Z as described above, we have the following description of the
projective indecomposable modules.

P(U) ∼

U

W
⊕ Y

U
Y
U
Y

U

P(V ) ∼

V
Z
V
Z
V
Z

⊕
0

V

P(W ) ∼
W
U
W

■


